# Chem 234 Final Exam Review

Organic I Material

# Condensed & Partially Condensed Structures

 ACS Exam uses many condensed and partially condensed structures.

 $KOC(CH_3)_3$ 

 $LiN[CH(CH_3)_2]_2$ 

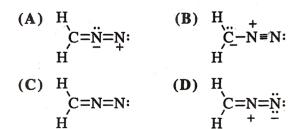
H<sub>3</sub>CCO<sub>2</sub>H

## Nomenclature

- Don't expect anything too complex.
- Be able to name alkenes with E/Z system.

### **Nomenclature**

• Be able to name using the R/S System


$$\begin{array}{c} \text{CH}_3\\ \text{H} \longrightarrow \text{Br}\\ \text{H} \longrightarrow \text{OH}\\ \text{CH}_3 \end{array}$$

#### **Structure**

• Don't forget about lone pairs or the octet rule!!



 Sample Q: Which is an acceptable Lewis Structure for diazomethane?



## Hybridization

- A bond or lone pair counts as one group.
  - 4 Groups =  $sp^3$
  - 3 Groups = sp<sup>2</sup>
  - 2 Groups = sp



#### Tips:

- A "+" charge on carbon is a void (lacks one group).
- A "+" on heteroatom is typically just a formal charge.
- An atom with a lone pair next to a Pi-bond will typically be sp<sup>2</sup> hybridized despite appearing sp<sup>3</sup>.

#### Resonance

#### Watch For:

• "+" or "-" or lone pair on atom next to double bond.



Lone pair on atom next to a carbocation.

$$\begin{array}{c} \mathsf{H}_2\mathsf{N} - \overset{\mathsf{H}}{\mathsf{C}} = \overset{\mathsf{H}}{\mathsf{C}} - \overset{\mathsf{H}}{\mathsf{C}} - \overset{\mathsf{H}}{\mathsf{C}} \mathsf{H}_3 \\ \mathsf{H} \ \oplus \end{array}$$

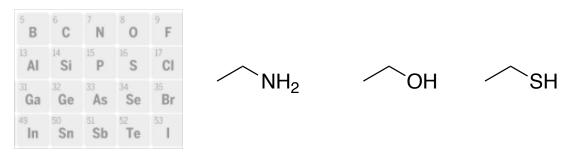
#### Resonance

# Which resonance structure is the major contributor to the resonance hybrid?

i.e. Which resonance structure is most important?

i.e. Which resonance structure contributes most to the overall picture of this molecule?

- 1. Minimized Charges
- 2. Structures where all atoms have octet
- 3. Negative charge on most electronegative atom


# **Acidity**

# Acidity is assessed by analyzing the conjugate base stability.

1. Charged acids are more acidic than uncharged acids.

$$H_2S$$
 vs  $H_3S^+$ 

2. Atom Effect (acidity increases  $\downarrow$  and  $\rightarrow$ )



## **Acidity**

3. If the conjugate base is resonance stabilized, the acid is more acidic.

4. Inductive Effect: Nearby e-neg atoms increase acidity. but... watch out for resonance donors!

# **Acidity**

5. More s-character = more acidic



An important exception to know!!



# **Conformational Analysis of Acyclic Alkanes**

- Stability Trend:
  - staggered anti > staggered gauche > eclipsed

 $\mathsf{CH_3CH_2CH_2CH_3}$ 

# **Cyclohexane Chair Conformation**

What is the relationship between the two molecules?

$$H_3C$$
 $CH_3$ 

Which chair conformation is more stable?

# **Alkene Stability**

Alkenes become more stable with increasing substitution.

Conjugation increases stability.

### **Reactions**

Important Tip: A deuterium (D) can be used in place of a hydrogen (H) in any reaction.

The deuterium reacts *identically* to the hydrogen.

$$\begin{array}{ccc}
O & 1. CH_3O \\
\hline
2. D_3O^+
\end{array}$$

### **Reactions**

The ACS exam may use the term "ionization" to describe what I typically call "loss of a leaving group."

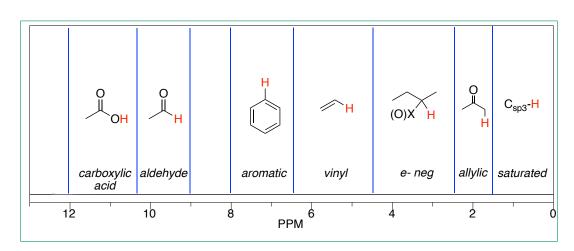
Sample Q: Which one will undergo ionization at the fastest rate?

# **Synthesis Involving Acetylide Ion**

Show how you can make trans-2-butene starting with acetylene.

# **Solvolysis**

 $S_N1$  with the solvent acting as the nucleophile.


## **Ozonolysis**

Uses ozone to cleave pi-bonds.

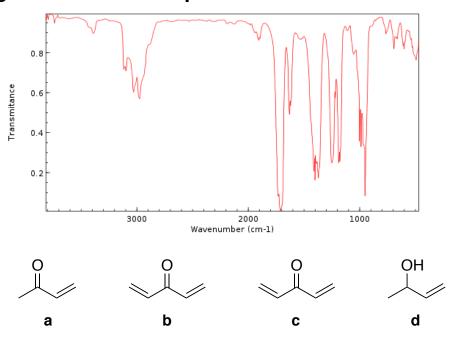
## **Spectroscopy**

You will not be given any data tables, but you also don't need to know many specifics.

### **Know approximate 1H NMR Regions**

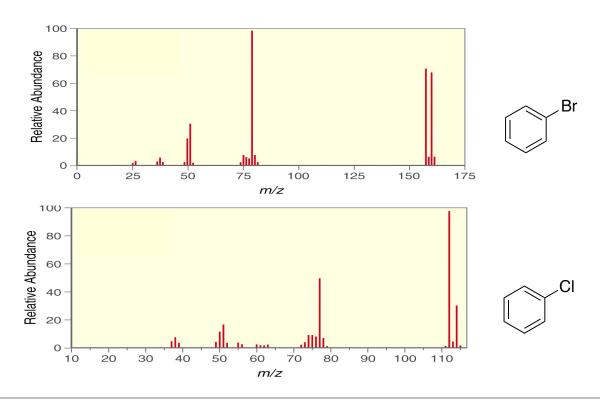


## **Spectroscopy - IR**


You will not be given any data tables, but you also don't need to know many specifics.

### **Know a few key IR Stretches**

| Functional Group            | Frequency                                 |
|-----------------------------|-------------------------------------------|
| OH & NH Stretch             | ~3300 cm <sup>-1</sup> (relatively broad) |
| Terminal Alkyne C-H         | 3300 cm <sup>-1</sup> (sharp narrow band) |
| Csp <sup>2</sup> -H Stretch | Just above 3000 cm <sup>-1</sup>          |
| Csp <sup>3</sup> -H Stretch | Just below 3000 cm <sup>-1</sup>          |
| C≡C Stretch                 | ~2100 cm <sup>-1</sup>                    |
| C=O Stretch                 | ~1700 cm <sup>-1</sup>                    |
| C=C Stretch                 | ~1650 cm <sup>-1</sup>                    |
| -CH <sub>3</sub> bending    | Just below 1400 cm <sup>-1</sup>          |


## **Spectroscopy - IR**

# Sample Q: Which one of the following compounds will give rise to the IR spectrum shown?



# **Spectroscopy – Mass Spectrometry**

Detecting the presence of a halogen by the  $M^+/[M+2]^+$  ratio

